Algorithm Problem Solving (APS):
Divide-and-Conquer

Niema Moshiri
UC San Diego SPIS 2019

What is an

Goals of Algorithm Problem Solving (APS)

Goals of Algorithm Problem Solving (APS)

e Introduction to basic algorithmic strategies for solving problems

Goals of Algorithm Problem Solving (APS)

e Introduction to basic algorithmic strategies for solving problems

e Emphasis on writing solutions precisely and coherently

Goals of Algorithm Problem Solving (APS)

e Introduction to basic algorithmic strategies for solving problems
e Emphasis on writing solutions precisely and coherently

e Practice discovering algorithms and describing them

Goals of Algorithm Problem Solving (APS)

e Introduction to basic algorithmic strategies for solving problems
e Emphasis on writing solutions precisely and coherently
e Practice discovering algorithms and describing them

e Analyze algorithms

Example: The Largest Integer Problem

Example: The Largest Integer Problem

e Input: A list of integers ints

Example: The Largest Integer Problem

e Input: A list of integers ints

42

Example: The Largest Integer Problem
e Input: A list of integers ints

e Output: An integer x in ints such that, for all integersy inints, x>y

Example: The Largest Integer Problem
e Input: A list of integers ints
e Output: An integer x in ints such that, for all integersy inints, x>y

o In other words, x is a largest integer in ints

/ 25 0 42 -9

Example: The Largest Integer Problem
e Input: A list of integers ints
e Output: An integer x in ints such that, for all integersy inints, x>y

o In other words, x is a largest integer in ints

Easier Example: The Peanut Butter & Jelly Problem

Easier Example: The Peanut Butter & Jelly Problem

e Input: A closed jar of peanut butter jar_pb, a closed jar of jelly
jar_jelly, a closed bag of toast bag_toast, and a knife knife

Easier Example: The Peanut Butter & Jelly Problem

e Input: A closed jar of peanut butter jar_pb, a closed jar of jelly
jar_jelly, a closed bag of toast bag_toast, and a knife knife

e Output: A peanut butter & jelly sandwich pbj

Easier Example: The Peanut Butter & Jelly Problem

e Input: A closed jar of peanut butter jar_pb, a closed jar of jelly
jar_jelly, a closed bag of toast bag_toast, and a knife knife

e Output: A peanut butter & jelly sandwich pbj

Let’s solve the problem!

Easier Example: The Peanut Butter & Jelly Problem

Open bag_toast

Remove 2 pieces of toast x and y from bag_toast
Close bag toast

Open jar_pb

Insert knife into jar_pb

Remove knife from jar_pb

Spread knife onto x

Wipe knife

Close jar_pb

O 00 N O VT p W IN B

=
Y

What is Algorithm Problem Solving (APS)?

What is Algorithm Problem Solving (APS)?

e An algorithm describes a series of operations to perform some task

What is Algorithm Problem Solving (APS)?

e An algorithm describes a series of operations to perform some task

e A program is a computer-understandable formulation of an algorithm

What is Algorithm Problem Solving (APS)?

e An algorithm describes a series of operations to perform some task
e A program is a computer-understandable formulation of an algorithm

e APS is the process of discovering the algorithm in the first place

What is Algorithm Problem Solving (APS)?

e An algorithm describes a series of operations to perform some task
e A program is a computer-understandable formulation of an algorithm

e APS is the process of discovering the algorithm in the first place

APS = Algorithm = Program

Example: The Largest Integer Problem
e Input: A list of integers ints
e Output: An integer x in ints such that, for all integersy inints, x>y

o In other words, x is a largest integer in ints

Let’s solve the problem!

Example: The Largest Integer Problem

Algorithm largest_number(ints):
X <« negative infinity
For every integer y in ints:
if y > x:
X <<y

Return x

Example: The Largest Integer Problem

e Our algorithm is correct (can you prove it?)

Example: The Largest Integer Problem
e Our algorithm is correct (can you prove it?)

e However, a single “person” has to look at every integer

Example: The Largest Integer Problem
e Our algorithm is correct (can you prove it?)
e However, a single “person” has to look at every integer

e Even if we had more “people,” they have no way of helping

Example: The Largest Integer Problem

e Our algorithm is correct (can you prove it?)

e However, a single “person” has to look at every integer

e Even if we had more “people,” they have no way of helping

e Can we think of a way to speed things up by working in parallel?

Recursion

e Algorithm that depends on smaller subproblems of itself

Recursion
e Algorithm that depends on smaller subproblems of itself

e Typically composed of two “types” of cases:

Recursion
e Algorithm that depends on smaller subproblems of itself
e Typically composed of two “types” of cases:

o Base Case: Can be solved directly

Recursion
e Algorithm that depends on smaller subproblems of itself
e Typically composed of two “types” of cases:

o Base Case: Can be solved directly

o Recursive Case: Can be solved using solutions of subproblems

Example: Counting People Recursively

Algorithm num_people(person):
If person is at the front of the line:
Return 1
Else:
neighbor < the person in front of person

Return num_people(neighbor) + 1

Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithms

e Divide a given problem into several subproblems

Divide-and-Conquer Algorithms
e Divide a given problem into several subproblems

e Solve each subproblem recursively

Divide-and-Conquer Algorithms
e Divide a given problem into several subproblems
e Solve each subproblem recursively

e Combine the solutions of the subproblems to solve the problem

Divide-and-Conquer Algorithms

e Divide a given problem into several subproblems

e Solve each subproblem recursively

e Combine the solutions of the subproblems to solve the problem

e Tip: Try to balance the sizes of the subproblems as much as possible

A Protocol for Solving Problems

A Protocol for Solving Problems

1. Articulate the problem

A Protocol for Solving Problems

1. Articulate the problem

2. Work out concrete examples, making note of boundary cases

A Protocol for Solving Problems

1. Articulate the problem
2. Work out concrete examples, making note of boundary cases

3. Brainstorm about the algorithm

A Protocol for Solving Problems

—

Articulate the problem

Work out concrete examples, making note of boundary cases

Brainstorm about the algorithm

H W N

Design an algorithm

A Protocol for Solving Problems

—

Articulate the problem
Work out concrete examples, making note of boundary cases
Brainstorm about the algorithm

Design an algorithm

o > W N

Analyze the algorithm

A Protocol for Solving Problems

—

Articulate the problem

Work out concrete examples, making note of boundary cases
Brainstorm about the algorithm

Design an algorithm

Analyze the algorithm

S 0k~ W N

Write the solution

A Protocol for Solving Problems

—

Articulate the problem

Work out concrete examples, making note of boundary cases
Brainstorm about the algorithm

Design an algorithm

Analyze the algorithm

Write the solution

N O o0 B~ W N

Revise

Example: The Largest Integer Problem
e Input: A list of integers ints
e Output: An integer x in ints such that, for all integersy inints, x>y

o In other words, x is a largest integer in ints

Let’s solve the problem!

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b c¢c d e f g h

largest integer(ints, start, end)

Example: The Largest Integer Problem

0

1

2

3

4

a

b

C

d

e

largest integer(ints,

%)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b ¢ dje f g h

largest integer(ints, e , 3)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b|lc dje f g h

largest integer(ints, o , 1)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b|lc dje f g h

largest integer(ints, e , 0)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b|lc dje f g h

largest integer(ints, e , 0)

d

Example: The Largest Integer Problem

0

1

2

3

4

a

b

C

d

e

largest integer(ints,

b

1

1)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

| c d|,e f g h

largest integer(ints, o , 1)

i = max(a,b)

Example: The Largest Integer Problem

2

3

4

C

d

e

largest integer(ints,

2

3)

Example: The Largest Integer Problem

2

3

4

C

d

e

C

largest integer(ints,

2

2)

Example: The Largest Integer Problem

2

3

4

C

d

e

d

largest integer(ints,

3

3)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

|] e f g h

largest integer(ints, 2 , 3)

j = max(c,d)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

K e f g h

largest integer(ints, e , 3)

k = max(i,j)

Example: The Largest Integer Problem

largest integer(ints, 4 , 5)

1 = max(e,f)

Example: The Largest Integer Problem

0 1 2 3 4 5 §) 7
K I m

largest integer(ints, 6 , 7))

m = max(g,h)

Example: The Largest Integer Problem

largest integer(ints, 4 , 7)

n = max(1l,m)

Example: The Largest Integer Problem

largest integer(ints, e , 7)

n = max(k,n)

Example: The Largest Integer Problem

Algorithm largest_number(ints, start, end):
If start equals end:
Return ints[start]
Else:
mid «— floor((start + end) / 2)
left «— largest_number(ints, start, mid)

right «— largest_number(ints, mid+1,
end)

Return max(left, right)

