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e Analyze algorithms
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Easier Example: The Peanut Butter & Jelly Problem

e Input: A closed jar of peanut butter jar_pb, a closed jar of jelly
jar_jelly, a closed bag of toast bag_toast, and a knife knife

e Output: A peanut butter & jelly sandwich pbj

Let’s solve the problem!




Easier Example: The Peanut Butter & Jelly Problem

Open bag_toast

Remove 2 pieces of toast x and y from bag_toast
Close bag toast

Open jar_pb

Insert knife into jar_pb

Remove knife from jar_pb

Spread knife onto x

Wipe knife

Close jar_pb
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What is Algorithm Problem Solving (APS)?

e An algorithm describes a series of operations to perform some task
e A program is a computer-understandable formulation of an algorithm

e APS is the process of discovering the algorithm in the first place

APS = Algorithm = Program




Example: The Largest Integer Problem
e Input: A list of integers ints
e Output: An integer x in ints such that, for all integersy inints, x>y

o In other words, x is a largest integer in ints

Let’s solve the problem!




Example: The Largest Integer Problem

Algorithm largest_number(ints):
X <« negative infinity
For every integer y in ints:
if y > x:
X <<y

Return x
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Example: The Largest Integer Problem

e Our algorithm is correct (can you prove it?)

e However, a single “person” has to look at every integer

e Even if we had more “people,” they have no way of helping

e Can we think of a way to speed things up by working in parallel?
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Recursion
e Algorithm that depends on smaller subproblems of itself
e Typically composed of two “types” of cases:

o Base Case: Can be solved directly

o Recursive Case: Can be solved using solutions of subproblems



Example: Counting People Recursively

Algorithm num_people(person):
If person is at the front of the line:
Return 1
Else:
neighbor < the person in front of person

Return num_people(neighbor) + 1
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Divide-and-Conquer Algorithms

e Divide a given problem into several subproblems

e Solve each subproblem recursively

e Combine the solutions of the subproblems to solve the problem

e Tip: Try to balance the sizes of the subproblems as much as possible
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A Protocol for Solving Problems

—

Articulate the problem

Work out concrete examples, making note of boundary cases
Brainstorm about the algorithm

Design an algorithm

Analyze the algorithm

Write the solution
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e Input: A list of integers ints
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o In other words, x is a largest integer in ints

Let’s solve the problem!
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largest integer(ints, 4 , 5)
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largest integer(ints, 4 , 7 )
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largest integer(ints, e , 7 )

n = max(k,n)




Example: The Largest Integer Problem

Algorithm largest_number(ints, start, end):
If start equals end:
Return ints[start]
Else:
mid «— floor((start + end) / 2)
left «— largest_number(ints, start, mid)

right «— largest_number(ints, mid+1,
end)

Return max(left, right)



