
Algorithm Problem Solving (APS):

Divide-and-Conquer

Niema Moshiri
UC San Diego SPIS 2019

What is an algorithm?

Goals of Algorithm Problem Solving (APS)

Goals of Algorithm Problem Solving (APS)

● Introduction to basic algorithmic strategies for solving problems

Goals of Algorithm Problem Solving (APS)

● Introduction to basic algorithmic strategies for solving problems

● Emphasis on writing solutions precisely and coherently

Goals of Algorithm Problem Solving (APS)

● Introduction to basic algorithmic strategies for solving problems

● Emphasis on writing solutions precisely and coherently

● Practice discovering algorithms and describing them

Goals of Algorithm Problem Solving (APS)

● Introduction to basic algorithmic strategies for solving problems

● Emphasis on writing solutions precisely and coherently

● Practice discovering algorithms and describing them

● Analyze algorithms

Example: The Largest Integer Problem

Example: The Largest Integer Problem

● Input: A list of integers ints

Example: The Largest Integer Problem

7 25 0 42 -9

● Input: A list of integers ints

Example: The Largest Integer Problem

7 25 0 42 -9

● Input: A list of integers ints

● Output: An integer x in ints such that, for all integers y in ints, x ≥ y

Example: The Largest Integer Problem

7 25 0 42 -9

● Input: A list of integers ints

● Output: An integer x in ints such that, for all integers y in ints, x ≥ y

○ In other words, x is a largest integer in ints

Example: The Largest Integer Problem

● Input: A list of integers ints

● Output: An integer x in ints such that, for all integers y in ints, x ≥ y

○ In other words, x is a largest integer in ints

7 2 0 4 -9 5 1 -4 3 8 -2 -7 ... -1 -8 6 -3 -6 9 -5 2

Easier Example: The Peanut Butter & Jelly Problem

Easier Example: The Peanut Butter & Jelly Problem

● Input: A closed jar of peanut butter jar_pb, a closed jar of jelly
jar_jelly, a closed bag of toast bag_toast, and a knife knife

Easier Example: The Peanut Butter & Jelly Problem

● Input: A closed jar of peanut butter jar_pb, a closed jar of jelly
jar_jelly, a closed bag of toast bag_toast, and a knife knife

● Output: A peanut butter & jelly sandwich pbj

Easier Example: The Peanut Butter & Jelly Problem

● Input: A closed jar of peanut butter jar_pb, a closed jar of jelly
jar_jelly, a closed bag of toast bag_toast, and a knife knife

● Output: A peanut butter & jelly sandwich pbj

Let’s solve the problem!

Easier Example: The Peanut Butter & Jelly Problem

1. Open bag_toast

2. Remove 2 pieces of toast x and y from bag_toast

3. Close bag_toast

4. Open jar_pb

5. Insert knife into jar_pb

6. Remove knife from jar_pb

7. Spread knife onto x

8. Wipe knife

9. Close jar_pb

10. ...

What is Algorithm Problem Solving (APS)?

What is Algorithm Problem Solving (APS)?

● An algorithm describes a series of operations to perform some task

What is Algorithm Problem Solving (APS)?

● An algorithm describes a series of operations to perform some task

● A program is a computer-understandable formulation of an algorithm

What is Algorithm Problem Solving (APS)?

● An algorithm describes a series of operations to perform some task

● A program is a computer-understandable formulation of an algorithm

● APS is the process of discovering the algorithm in the first place

What is Algorithm Problem Solving (APS)?

● An algorithm describes a series of operations to perform some task

● A program is a computer-understandable formulation of an algorithm

● APS is the process of discovering the algorithm in the first place

APS → Algorithm → Program

Example: The Largest Integer Problem

● Input: A list of integers ints

● Output: An integer x in ints such that, for all integers y in ints, x ≥ y

○ In other words, x is a largest integer in ints

Let’s solve the problem!

Example: The Largest Integer Problem

Algorithm largest_number(ints):

 x ← negative infinity

 For every integer y in ints:

 if y > x:

 x ← y

 Return x

Example: The Largest Integer Problem

● Our algorithm is correct (can you prove it?)

Example: The Largest Integer Problem

● Our algorithm is correct (can you prove it?)

● However, a single “person” has to look at every integer

Example: The Largest Integer Problem

● Our algorithm is correct (can you prove it?)

● However, a single “person” has to look at every integer

● Even if we had more “people,” they have no way of helping

Example: The Largest Integer Problem

● Our algorithm is correct (can you prove it?)

● However, a single “person” has to look at every integer

● Even if we had more “people,” they have no way of helping

● Can we think of a way to speed things up by working in parallel?

Recursion

● Algorithm that depends on smaller subproblems of itself

Recursion

● Algorithm that depends on smaller subproblems of itself

● Typically composed of two “types” of cases:

Recursion

● Algorithm that depends on smaller subproblems of itself

● Typically composed of two “types” of cases:

○ Base Case: Can be solved directly

Recursion

● Algorithm that depends on smaller subproblems of itself

● Typically composed of two “types” of cases:

○ Base Case: Can be solved directly

○ Recursive Case: Can be solved using solutions of subproblems

Example: Counting People Recursively

Algorithm num_people(person):

 If person is at the front of the line:

 Return 1

 Else:

 neighbor ← the person in front of person

 Return num_people(neighbor) + 1

Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithms

● Divide a given problem into several subproblems

Divide-and-Conquer Algorithms

● Divide a given problem into several subproblems

● Solve each subproblem recursively

Divide-and-Conquer Algorithms

● Divide a given problem into several subproblems

● Solve each subproblem recursively

● Combine the solutions of the subproblems to solve the problem

Divide-and-Conquer Algorithms

● Divide a given problem into several subproblems

● Solve each subproblem recursively

● Combine the solutions of the subproblems to solve the problem

● Tip: Try to balance the sizes of the subproblems as much as possible

A Protocol for Solving Problems

A Protocol for Solving Problems

1. Articulate the problem

A Protocol for Solving Problems

1. Articulate the problem

2. Work out concrete examples, making note of boundary cases

A Protocol for Solving Problems

1. Articulate the problem

2. Work out concrete examples, making note of boundary cases

3. Brainstorm about the algorithm

A Protocol for Solving Problems

1. Articulate the problem

2. Work out concrete examples, making note of boundary cases

3. Brainstorm about the algorithm

4. Design an algorithm

A Protocol for Solving Problems

1. Articulate the problem

2. Work out concrete examples, making note of boundary cases

3. Brainstorm about the algorithm

4. Design an algorithm

5. Analyze the algorithm

A Protocol for Solving Problems

1. Articulate the problem

2. Work out concrete examples, making note of boundary cases

3. Brainstorm about the algorithm

4. Design an algorithm

5. Analyze the algorithm

6. Write the solution

A Protocol for Solving Problems

1. Articulate the problem

2. Work out concrete examples, making note of boundary cases

3. Brainstorm about the algorithm

4. Design an algorithm

5. Analyze the algorithm

6. Write the solution

7. Revise

Example: The Largest Integer Problem

● Input: A list of integers ints

● Output: An integer x in ints such that, for all integers y in ints, x ≥ y

○ In other words, x is a largest integer in ints

Let’s solve the problem!

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b c d e f g h

largest_integer(ints, start, end)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b c d e f g h

largest_integer(ints, 0 , 7)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b c d e f g h

largest_integer(ints, 0 , 3)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b c d e f g h

largest_integer(ints, 0 , 1)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b c d e f g h

largest_integer(ints, 0 , 0)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b c d e f g h

largest_integer(ints, 0 , 0)

a

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

a b c d e f g h

largest_integer(ints, 1 , 1)

b

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

i c d e f g h

largest_integer(ints, 0 , 1)

i = max(a,b)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

i c d e f g h

largest_integer(ints, 2 , 3)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

i c d e f g h

largest_integer(ints, 2 , 2)

c

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

i c d e f g h

largest_integer(ints, 3 , 3)

d

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

i j e f g h

largest_integer(ints, 2 , 3)

j = max(c,d)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

k e f g h

largest_integer(ints, 0 , 3)

k = max(i,j)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

k l g h

largest_integer(ints, 4 , 5)

l = max(e,f)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

k l m

largest_integer(ints, 6 , 7)

m = max(g,h)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

k n

largest_integer(ints, 4 , 7)

n = max(l,m)

Example: The Largest Integer Problem

0 1 2 3 4 5 6 7

n

largest_integer(ints, 0 , 7)

n = max(k,n)

Example: The Largest Integer Problem

Algorithm largest_number(ints, start, end):

 If start equals end:

 Return ints[start]

 Else:

 mid ← floor((start + end) / 2)

 left ← largest_number(ints, start, mid)

 right ← largest_number(ints, mid+1,
end)

 Return max(left, right)

